# T-Pro Bradford Protein Assay reagent (5X)



Storage

(JB04-D003) 500 ml



#### This product is for laboratory research ONLY and not for diagnostic use. The T-Pro Bradford protein assay (5X) was based on the Bradford Description method, is a simple and accurate procedure for determining concentration of solubilized protein. It involves the addition of an acidic dye to protein solution, and subsequent measurement at 595 nm with a spectrophotometer or microplate reader. Comparison to a standard curve provides a relative measurement of protein concentration. Detection micro assay: 1-25 μg Limitations macro assay: 20-1,000 μg **Advantages** Fast and inexpensive Highly specific for protein Very sensitive Compatible with a wide range of substances Extinction co-efficient for the dye-protein complex is stable over 10 orders of magnitude (assessed in albumin) Dye reagent is complex is stable for approximately one hour **Disadvantages** Non-linear standard curve over wide ranges Response to different proteins can vary widely, choice of standard is very important Standard BSA Solution (2 mg/ml): 0.2 g BSA is dissolved and made up to 100 ml with PBS. **Notes** Dye binds to quartz cuvettes quite strongly; therefore, glass or plastic cuvettes should be used. It should be noted that the assay primarily responds to arginine residues (eight times as much as the other listed residues) so if you have an arginine rich protein, you may need to find a standard that is arginine rich as well.

help in their solubility.

• Hydrophobic, membrane or sticky proteins tend to precipitate in the presence of dyes; it is therefore recommended that small amount of sodium hydroxide is used in the assay to

T-Pro Bradford Protein Assay Regent (5X) is stable for 2~8°C

### **Preparation of Standards and Working Reagent**

#### A. Preparation of the Bradford Reagent

- 1. Prepare Bradford Reagent by mixing 1 part of Bradford Reagent (5X) and 4 parts of ddH2O.
- 2. The required Bradford Reagent for each sample of Test Tube Procedure is 5.0 ml and that of the Microplate Procedure is 200  $\mu$ l.

#### **B. Preparation of the Protein Standards**

- 1. Preparation of diluted protein standards.
- 2. For "Test Tube Procedure",

use standard guide of 20-1,000  $\mu$ g/ml in Table 1 for the standard protocol and 1-25  $\mu$ g/ml in Table 2 for the enhanced protocol.

3. For "Microplate Procedure",

use standard guide of 20-1,000  $\mu g/ml$  in Table 3 for the standard protocol and 1-25  $\mu g/ml$  in Table 4 for the enhanced protocol.

Table 1. Preparation of Diluted Albumin (BSA) Standards for Test tube Procedure (working range: 20-1,000 µg/ml)

| Tube | Volume of Diluent (μl) | Volume and source of   | Final BSA Standard    |
|------|------------------------|------------------------|-----------------------|
|      |                        | protein Standards (μΙ) | Concentration (µg/ml) |
| Α    | 1000                   | 1000 of Stock          | 1000                  |
| В    | 150                    | 450 of tube A dilution | 750                   |
| С    | 600                    | 600 of tube A dilution | 500                   |
| D    | 600                    | 600 of tube C dilution | 250                   |
| E    | 600                    | 600 of tube D dilution | 125                   |
| F    | 600                    | 600 of tube E dilution | 62.5                  |
| G    | 900                    | 600 of tube F dilution | 25                    |
| Н    | 600                    |                        | 0                     |

Table 2. Preparation of Diluted Albumin (BSA) Standards for Test tube Procedure (working range: 1-25  $\mu$ g/ml)

| Tube | Volume of Diluent (μl) | Volume and source of protein Standards (μl) | Final BSA Standard<br>Concentration (µg/ml) |
|------|------------------------|---------------------------------------------|---------------------------------------------|
| Α    | 3160                   | 40 of Stock                                 | 25                                          |
| В    | 3960                   | 40 of Stock                                 | 20                                          |
| С    | 1500                   | 1500 of tube A dilution                     | 12.5                                        |
| D    | 2000                   | 2000 of tube B dilution                     | 10                                          |
| Е    | 1000                   | 1000 of tube C dilution                     | 6.25                                        |
| F    | 2000                   | 2000 of tube D dilution                     | 5                                           |
| G    | 2000                   | 2000 of tube F dilution                     | 2.5                                         |
| Н    | 2000                   |                                             | 0                                           |

Table 3. Preparation of Diluted Albumin (BSA) Standards for Microplate Procedure (working range: 20-1.000 ug/ml)

| ±,000 μ <sub>β</sub> / 1111/ |                        |                                             |                                             |
|------------------------------|------------------------|---------------------------------------------|---------------------------------------------|
| Tube                         | Volume of Diluent (μl) | Volume and source of protein Standards (µl) | Final BSA Standard<br>Concentration (µg/ml) |
| Α                            | 150                    | 150 of Stock                                | 1000                                        |
| В                            | 20                     | 60 of tube A dilution                       | 750                                         |
| С                            | 100                    | 100 of tube A dilution                      | 500                                         |
| D                            | 100                    | 100 of tube C dilution                      | 250                                         |
| Е                            | 100                    | 100 of tube D dilution                      | 125                                         |
| F                            | 100                    | 100 of tube E dilution                      | 62.5                                        |
| G                            | 150                    | 100 of tube F dilution                      | 25                                          |
| Н                            | 100                    |                                             | 0                                           |

Table 4. Preparation of Diluted Albumin (BSA) Standards for Microplate Procedure (working range: 1-25 μg/ml)

| - 1.01 1 |                        |                        |                       |
|----------|------------------------|------------------------|-----------------------|
| Tube     | Volume of Diluent (μl) | Volume and source of   | Final BSA Standard    |
|          |                        | protein Standards (μl) | Concentration (µg/ml) |
| Α        | 790                    | 10 of Stock            | 25                    |
| В        | 990                    | 10 of Stock            | 20                    |
| С        | 400                    | 400 of tube A dilution | 12.5                  |
| D        | 400                    | 400 of tube B dilution | 10                    |
| E        | 400                    | 400 of tube C dilution | 6.25                  |
| F        | 400                    | 400 of tube D dilution | 5                     |
| G        | 400                    | 400 of tube F dilution | 2.5                   |
| Н        | 400                    |                        | 0                     |

#### Test tube Procedure

#### a. Standard Protocol (Working range: 20-1,000 µg/ml)

- 1 Pipet 200 µl of each standard (Table 1) or unknown sample replicate into an appropriately labeled test tube.
- 2 Add 5.0 mL of the Bradford Reagent (1X) to each tube and vortex well.
- 3 Incubate at room temperature for at least 5 minutes.
- 4 Turn on the spectrophotometer and set to 595 nm to measure the absorbance of all the samples and the BSA standard within 1 hour of the reaction.
- 5 Prepare a standard curve by measurement the absorbance of BSA at 595 nm and determine the protein concentration of each unknown sample by standard curve.

#### b. Enhanced Protocol (Working range: 1-25 μg/ml) use JB04-D003

- 1 Pipet 800 μl of each standard (Table 2) or unknown sample replicate into an appropriately labeled test tube
- Add 200  $\mu$ l of the Bradford Reagent (5X) to each tube. Mix the sample and Bradford Reagent (5X) thoroughly using vortex mixer.
- 3 Incubate at room temperature for at least 5 minutes.
- 4 Turn on the spectrophotometer and set to 595 nm to measure the absorbance of all the samples and the BSA standard within 1 hour of the reaction.
- 5 Prepare a standard curve by measurement the absorbance of BSA at 595 nm and determine the protein concentration of each unknown sample by standard curve.

## **Microplate Procedure**

#### c. Standard Protocol (Working range: 20-1,000 μg/ml)

- 1 Pipet 20 μl of each standard (Table 3) or unknown sample replicate into a microplate well.
- 2 Add 200  $\mu$ l of the Bradford Reagent to each well. Mix the sample and the reagent thoroughly using plate shaker.
- 3 Incubate at room temperature for at least 5 minutes.
- 4 Measure the absorbance at 595 nm on a microplate reader within 1 hour of the reaction.
- 5 Prepare a standard plate by measurement the absorbance of BSA at 595 nm and determine the protein concentration of each unknown sample by standard plate.

#### d. Enhanced Protocol (Working range: 1-25 μg/mL) use JB04-D003

- 1 Pipet 160 μl of each standard (Table 4) and unknown sample replicate into a microplate well.
- 2 Add 40 μL of the Bradford Reagent (5X) to each well. Mix the sample and Bradford Reagent (5X) thoroughly using plate shaker.
- 3 Incubate at room temperature for at least 5 minutes.
- 4 Measure the absorbance at 595 nm on a microplate reader within 1 hour of the reaction.
- 5 Prepare a standard plate by measurement the absorbance of BSA at 595 nm and determine the protein concentration of each unknown sample by standard plate.

| Bradford Reagent                  | 5X                                                           |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------|--|--|--|--|
| Standard Protocol: 20-1,000 μg/ml |                                                              |  |  |  |  |
| Dilrtion                          | Prepare 1 part of dye reagent with 4 parts of ddH₂O          |  |  |  |  |
| test tube(sample/reagent)         | 100 µl / 5 ml (reagent 1X)                                   |  |  |  |  |
| microplate(sample/reagent)        | 10 µl / 200 µl (reagent 1X)                                  |  |  |  |  |
|                                   | Enhanced protocol: 1-25 μg/ml                                |  |  |  |  |
| test tube(sample/reagent)         | 800 μl / 200 μl (reagent 5X)                                 |  |  |  |  |
| microplate(sample/reagent)        | 160 μl / 40 μl (reagent 5X)                                  |  |  |  |  |
| Reaction                          | Incubate for 5 mins at RT                                    |  |  |  |  |
| Measurement                       | Measure absorbance at 595 nm; color will be stable for 1 hr. |  |  |  |  |

# Compatible concentration of common substances

| Salts/Buffers                   |       |                                                |           |
|---------------------------------|-------|------------------------------------------------|-----------|
| ACES, pH 7.8                    | 100mM | MES, pH 6.1                                    | 100mM     |
| Acetate                         | 600mM | MOPS, pH 7.2                                   | 100mM     |
| Adenosine                       | 1mM   | Nickel chloride in TBS, pH 7.2                 | 10mM      |
| Ammonium sulfate                | 1M    | PBS; Phosphate (0.1 M), NaCl (0.15 M), pH 7.2  | undiluted |
| Asparagine                      | 10mM  | PIPES, pH 6.8                                  | 100mM     |
| ATP                             | 1mM   | RIPA lysis buffer; 50mM Tris, 150mM NaCl, 0.5% | 1/10      |
|                                 |       | DOC, 1% NP-40, 0.1% SDS, pH 8.0                | dilution  |
| Bicine, pH 8.4                  | 100mM | Sodium acetate, pH 4.8                         | 180mM     |
| Bis-Tris, pH 6.5                | 100mM | Sodium azide                                   | 0.5%      |
| Borate, pH 9.5                  | 50mM  | Sodium bicarbonate                             | 100mM     |
| Calcium chloride in TBS, pH 7.2 | 10mM  | Sodium chloride                                | 5M        |
| Cesium bicarbonate              | 100mM | Sodium citrate, pH 4.8 or pH 6.4               | 200mM     |
| CHES, pH 9.0                    | 100mM | Sodium phosphate                               | 100mM     |
| Cobalt chloride in TBS, pH 7.2  | 10mM  | Tricine, pH 8.0                                | 100mM     |
| EPPS, pH 8.0                    | 100mM | Triethanolamine, pH 7.8                        | 100mM     |
| Ferric chloride in TBS, pH 7.2  | 10mM  | Tris                                           | 2M        |
| Glycine                         | 100mM | TBS; Tris (25mM), NaCl (0.15 M), pH 7.6        | undiluted |
| Guanidine-HCl                   | 3.5M  | Tris (25mM), Glycine (192mM), pH 8.0           | undiluted |
| HEPES, pH 7.5                   | 100mM | T-Pro RIPA lysis buffer                        | 1/20      |
|                                 |       |                                                | dilution  |
| Imidazole, pH 7.0               | 200mM |                                                |           |

| Chelating agents |       |                |       |  |
|------------------|-------|----------------|-------|--|
| EDTA             | 100mM | Sodium citrate | 200mM |  |
| EGTA             | 50mM  |                |       |  |

| Misc. Reagents & Solven | ts     |                  |         |
|-------------------------|--------|------------------|---------|
| Acetone                 | 10%    | Methanol         | 10%     |
| Acetonitrile            | 10%    | Phenol Red       | 0.5mg/L |
| Aprotinin               | 10mg/L | PMSF             | 1mM     |
| DMF, DMSO               | 10%    | Sodium Hydroxide | 100mM   |
| Ethanol                 | 10%    | Sucrose          | 10%     |
| Glycerol (Fresh)        | 10%    | TLCK             | 0.1mg/L |
| Hydrochloric Acid       | 100mM  | TPCK             | 0.1mg/L |
| Leupeptin               | 10mg/L | Urea             | 6M      |

| Detergents                  |       |                     |       |
|-----------------------------|-------|---------------------|-------|
| Brij-35                     | 0.12% | SDS                 | 0.12% |
| Brij-56, Brij-58            | 0.03% | Span 20             | 0.5%  |
| CHAPS, CHAPSO               | 5%    | Triton X-100, X-114 | 0.12% |
| Deoxycholic acid            | 0.05% | Triton X-305, X-405 | 0.5%  |
| Octyl β-glucoside           | 0.5%  | Tween-20, Tween-80  | 0.06% |
| Octyl β-thioglucopyranoside | 3%    | Tween-60            | 0.1%  |
| Nonidet P-40 (NP-40)        | 0.5%  | Zwittergent 3-14    | 0.02% |

| Reducing &Thiol-Containing Agents  |       |                       |       |  |
|------------------------------------|-------|-----------------------|-------|--|
| N-acetylglucosamine in PBS, pH 7.2 | 100mM | Glucose               | 1M    |  |
| Ascorbic acid                      | 50mM  | Melibiose             | 100mM |  |
| Cysteine                           | 10mM  | β-Mercaptoethanol     | 1M    |  |
| Dithioerythritol (DTE)             | 1mM   | Potassium thiocyanate | 3M    |  |
| Dithiothreitol (DTT)               | 5mM   | Thimerosa             | 0.01% |  |